CURRICULUM DOCUMENT

MATHEMATICS STUDY PROGRAM

FACULTY OF MATHEMATICS AND NATURAL SCIENCES
UNIVERSITAS SEBELAS MARET
SURAKARTA

CURRICULUM DOCUMENT

MATHEMATICS STUDY PROGRAM

FACULTY OF MATHEMATICS AND NATURAL SCIENCES

Editorial Team:
Dr. Dewi Retno Sari S S.Si.,M.Kom.
Dra. Purnami Widyaningsih M.App.Sc.
Dr. Putranto Hadi Utomo, S.Si., M.Si
Nughthoh Arfawi Kurdhi, S.Si., M.Sc.
Dr. Drs. Siswanto M.Si.
Purwo Edi Minarno, S.Pd.

UNIVERSITAS SEBELAS MARET SURAKARTA

KEPUTUSAN REKTOR UNIVERSITAS SEBELAS MARET NOMOR 204• " /UN27/HK/2021

TENTANG
KURIKULUM PROGRAM SARJANA PENDIDIKAN MATEMATIKA UNIVERSITAS SEBELAS MARET

REKTOR UNIVERSITAS SEBELAS MARET,

Menimbang : a. bahwa Universitas Sebelas Maret sebagai lembaga pendidikan tinggi yang menyelenggarakan Program Sarjana Pendidikan Matematika mengemban tugas untuk menghasilkan lulusan yang memiliki sikap, keterampilan umum, keterampilan khusus, dan pengetahuan yang mampu bersaing secara global;
b. bahwa untuk menyelenggarakan Program Sarjana Pendidikan Matematika diperlukan kurikulum;
c. bahwa untuk keperluan sebagaimana tersebut pada huruf a, dan huruf b, perlu menetapkan Keputusan Rektor tentang Kurikulum Program Sarjana Pendidikan Matematika Universitas Sebelas Maret.

Mengingat 1. Undang-Undang Nomor 20 Tahun 2003 tentang Sistem Pendidikan Nasional (Lembaran Negara Republik Indonesia Tahun 2003 Nomor 78, tambahan Lembaran Negara Nomor 4301);
2. Undang-Undang Nomor 12 Tahun 2012 tentang Pendidikan Tinggi (Lembaran Negara Republik Indonesia Tahun 2012 Nomor 158, Tambahan Lembaran Negara Republik Indonesia Nomor 5336);
3. Peraturan Pemerintah Nomor 19 Tahun 2005 tentang Standar Nasional Pendidikan (Lembaran Negara Republik Indonesia Tahun 2005 Nomor 41, Tambahan Lembaran Negara Republik Indonesia No 4496) sebagaimana diubah beberapa kali terakhir dengan Peraturan Pemerintah Nomor 13 Tahun 2015 tentang Perubahan Kedua Atas Peraturan Pemerintah Nomor 19 Tahun 2005 tentang Standar Nasional Pendidikan (Lembaran Negara Republik Indonesia Tahun 2015 Nomor 45, Tambahan Lembaran Negara Republik Indonesia No 5670);
4. Peraturan Pemerintah Nomor 4 Tahun 2014 tentang Penyelenggaraan Pendidikan Tinggi dan Pengelolaan Perguruan Tinggi (Lembaran Negara Republik Indonesia Tahun 2014 Nomor 6, Tambahan Lembaran Negara Republik Indonesia Nomor 5500);
5. Peraturan Pemerintah Nomor 56 Tahun 2020 tentang Perguruan Tinggi Negeri Badan Hukum Universitas Sebelas Maret (Lembaran Negara Republik Indonesia Tahun 2020 Nomor 228);
6. Keputusan Presiden Nomor 10 Tahun 1976 tentang Pendirian Universitas Negeri Surakarta Sebelas Maret;
7. Peraturan Menteri Pendidikan dan Kebudayaan Nomor 73 Tahun 2013 tentang Penerapan Kerangka Kualifikasi Nasional Indonesia Bidang Pendidikan Tinggi (Berita Negara Republik Indonesia Tahun 2013 Nomor 831);
8. Peraturan Menteri Riset, Teknologi, dan Pendidikan Tinggi Nomor 62 Tahun 2016 tentang Sistem Penjaminan Mutu Pendidikan Tinggi (Berita Negara Republik Indonesia Tahun 2016 Nomor 1462);
9. Peraturan Menteri Pendidikan dan Kebudayaan Nomor 3 Tahun 2020 tentang Standar Nasional Pendidikan Tinggi (Berita Negara Republik Indonesia Tahun 2020 Nomor 47);
10. Peraturan Menteri Pendidikan dan Kebudayaan Nomor 22 Tahun 2020 tentang Rencana Strategis Kementerian Pendidikan dan Kebudayaan Tahun 2020-2024;
11. Keputusan Menteri Riset, Teknologi dan Pendidikan Tinggi Nomor 12449/M/KP/2019 tentang Pengangkatan Rektor Universitas Sebelas Maret Periode Tahun 2019-2023;
12. Keputusan Menteri Pendidikan dan Kebudayaan Nomor 155/O/1998 tentang Pedoman Umum Organisaasi Kemahasiswaan di Perguruan Tinggi;
13. Peraturan Rektor Universitas Sebelas Maret Nomor 31 Tahun 2020 tentang Penyelenggaraan dan Pengelolaan Program Sarjana;
14. Peraturan Rektor Nomor 64 Tahun 2020 tentang Organisasi dan Tata Kerja Unsur di Bawah Rektor Universitas Sebelas Maret.

MEMUTUSKAN:

Menetapkan : KEPUTUSAN REKTOR TENTANG KURIKULUM PROGRAM SARJANA PENDIDIKAN MATEMATIKA UNIVERSITAS SEBELAS MARET.

KESATU : Menetapkan Kurikulum Program Studi Pendidikan Matematika dengan naskah Kurikulum sesuai pada Lampiran yang merupakan bagian yang tidak terpisahkan dari Keputusan Rektor ini;

KEDUA : Beban SKS yang harus diambil mahasiswa Program Sarjana Pendidikan Matematika minimal 144 (seratus empat puluh empat) satuan kredit semester dan masa studi dirancang untuk 8 (delapan)
semester; semester;

KETIGA : Keputusan ini berlaku terhitung pada tanggal ditetapkan.;

PREFACE

Praise and gratitude to God Almighty who has given the blessing of health and opportunity so that this curriculum document can be completed. The curriculum is the overall plan and arrangement regarding graduate learning outcomes, study materials, learning processes, and learning assessments used for guidelines of the implementation of the study program. Therefore, the curriculum can be considered as a process to conduct the learning process and a guide for the implementation of the study program.

The Mathematics Study Program has done a quality assurance process through the curriculum development based on learning outcomes. The 2020 curriculum of the Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret is an improvement to the previous curriculum, the 2015 Curriculum. The 2020 curriculum was developed based on the National Higher Education Standards (SNPT), Indonesian National Qualifications Framework (KKNI), Outcome Based Education, and Freedom of Learning-Independent Campus (MBKM) policy and was also taking into account the conditions of the study program, the characteristics of the world of work in the field of Information Technology and entrepreneurship, and the development of the industrial revolution 4.0. Based on the SNPT standards, the standards of graduate competency, content, learning process, and assessment are the main considerations in arranging the distribution of courses in a semester, designing compulsory and elective courses, and determining the amount of study load for each course.

Hopefully, this curriculum document can be a guideline for the implementation of the study program. In addition, it can also be a motivation for educators, education staff, and students to do their best so that the goals of the 2020 Curriculum can be achieved to the greatest extent.

Surakarta, January 8, 2021
Editorial Team

TABLE OF CONTENTS

TITLE ii
APPROVAL PAGE iii
PREFACE iv
TABLE OF CONTENTS V
LIST OF TABLES vi
LIST OF FIGURES vii
CHAPTER 1. STUDY PROGRAM IDENTITY 1
CHAPTER 2. VISION, MISSION, AND OBJECTIVES 2
CHAPTER 3. CURRICULUM EVALUATION 4
3.1. Current Curriculum 4
3.2. Curriculum Evaluation 6
CHAPTER 4. CURRICULUM PLANNING FOUNDATIONS 10
4.1. Philosophical Foundation 10
4.2. Sociological Foundation 11
4.3. Psychological Foundation 11
4.4. Historical Foundation 12
4.5. Juridical FOUNDATION 12
CHAPTER 5. GRADUATES PROFILE AND GRADUATES LEARNING OUTCOMES 14
5.1. Graduate Profile 14
5.2. Program Learning Outcomes (PLO) 17
5.3. Graduate Learning Outcomes 18
CHAPTER 6. STUDY MATERIALS 20
6.1. Framework for Preparation of Study Materials 20
6.2. Study Materials 23
CHAPTER 7. COURSES DETERMINATION 25
CHAPTER 8. COURSES ARRANGEMENT 27
8.1. Organization of Courses 27
8.2. Curriculum Structure of the Study Program 36
8.3. Freedom of Learning (MB) and Independent Campus (KM) (MB-KM) 37
CHAPTER 9. STRATEGY TO ACHIEVE GRADUATE LEARNING OUTCOMES 38
9.1. Learning Model and Method 38
9.2. Learning Assessment 39
9.3. Facilities and Instratucture. 44
REFERENCES 46
SYLLABUS 18

LIST OF TABLES

Table 1. Development of Mathematics Study Program Curriculum 4
Table 2. Profile dan Graduate Profile Description 14
Table 3. Description of Graduate Learning Outcomes in Attitude Aspect 14
Table 4. Description of Graduate Learning Outcomes in General Skills Aspect 15
Table 5. Description of Graduate Learning Outcomes in Knowledge Aspect 16
Table 6. Description of Graduate Learning Outcomes in Specific Skills Aspect 16
Table 7. Program Learning Outcomes Details 17
Table 8. Identification of Suitability of Graduate Learning Outcomes and PLO 18
Table 9. Identification of Graduate Profile with PLO. 19
Table 10. Basic Competence and Learning Material 23
Table 11. List of Compulsory Courses for Mathematics Study Program 27
Table 12. List of Directed Elective Courses 30
Table 13. List of Elective Courses 31
Table 14. Matrix of PLO and Courses 33
Table 15. Curriculum Structure 36
Table 16. Assessment Principle 40
Table 17. Assessment Techniques and Instruments 41
Table 18. Holistic Rubric 41
Table 19. Presentation Assessment Rubric 42
Table 20. Score Conversion 43

LIST OF FIGURES

Figure 1. Development of Mathematics Study Program Curriculum 4
Figure 2. Scheme 1 of Course Forming 24
Figure 3. Scheme 2 of Course Forming 25
Figure 4. Scheme of Learning Implementation in Mathematics Study Program 35

CHAPTER 1. STUDY PROGRAM IDENTITY

Study Program	Mathematics
Type of Degree	Bachelor's Degree
Management Unit of the Study Program	Mathematics and Natural Science
University	Universitas Sebelas Maret
Number of Decree on the University Creation	238/Kep/T3/1976
Date of Decree on the University Creation	October 18, 1976
Official Approving Decree on the University	Mayor of Surakarta
Creation	
University Address	Jl. Ir. Sutami No. 36A, Kentingan, Surakarta
Number of Decree on the Study Program	0297/O/1996
Establishment	
Date of Decree on the Study Program	October 1, 1996
Establishment	
Official Approving Decree on the Study Program	Bambang Soehendro
Establishment	
First Year of Entry	1989 (under Faculty of Engineering)
Call / Fax	Call (0271) 669376 - Fax. (0271)
	663375
E-Mail and Website	math@mipa.uns.ac.id and
	http://math.mipa.uns.ac.id/
Title for Graduate	S. Mat. (Bachelor's Degree of Mathematics)
Newest Accreditation Predicate	A
Number of SK BAN-PT	1932/SK/BAN-PT/Akred/S/VI/2019
Validity Period of Accreditation	June 12, 2019, to June 12, 2024

CHAPTER 2. VISION, MISSIONS, AND OBJECTIVES

Vision:

"To become a superior center for learning, studying, developing mathematics and its application at the international level based on the pillars of science."

Mission:

1) Organizing mathematics education and learning centered on Students and the selfdevelopment of lecturers as well as encouraging students' independence in knowledge, skills, and attitudes.
2) Equipping graduates to have mathematical thinking, high creativity, and innovation, various alternatives to solve a problem, science communication in oral and written, and the capability to develop themselves and their potential.
3) Developing research in the field of mathematics and its application for the benefit of the wider community.
4) Empowering networking with alumni in increasing the role of the institution. Building collaborative initiatives with other institutions at local, regional, national, and international to increase the relevance of graduates and the image of the institution.

Objectives:

1) Creating a conducive academic climate for increasing productivity, creativity, and enthusiasm to perform for the entire academic community.
2) Producing graduates who are able to internalize academic values, norms, and ethics; who are independent and highly competitive, and who have the ability to continue to further study.
3) Producing mathematical research outputs and their applications that benefit the development of science and technology (IPTEK).
4) Optimizing the participation of alumni in the implementation of education in the Mathematics Study Program FMIPA UNS, as well as in building self-image, promotion, and publication of study programs in the world of work, stakeholders, and the wider community.
5) Creating cooperation considering its quantity and quality with government institutions, businesses, and industry both nationally and internationally.

CHAPTER 3.

CURRICULUM EVALUATION OF THE STUDY PROGRAM

3.1. Current Curriculum

The Mathematics Study Program stands together with three other study programs; Physics, Chemistry, and Biology; at the Faculty of Mathematics and Natural Sciences (FMIPA) based on the Decree of the Minister of Education and Culture No. 0297/O/1996 dated October 1, 1996. The preparation process of the curriculum for the Mathematics study program is based on the SWOT (Strength, Weakness, Opportunity, and Threat) analysis of the ability of the study program (Scientific Vision) and Need Assessment from Tracer Study (Market Signal), by considering the changes in government policy. The development of the curriculum and the underlying legal basis is illustrated in Figure 1 and Table 1.

Figure 1. Development of Mathematics Study Program Curriculum

Table 1. Development of Mathematics Study Program Curriculum

Curriculum	Curriculum Foundation	Legal Basis
1996 Curriculum	National Curriculum, Local Curriculum	Decree of The Minister of National Education No. 063/U/1994
Curriculum	Study Program Courses (MKPS), General Courses (MKU)	Decree of The Minister of National Education No. 232/U/2000
2006 Curriculum	Decree of The Minister of National Education No. 045/U/2002	
2011	Competency-Based	Law of Higher Education No. 12 of 2012

Curriculum	Curriculum Foundation	Legal Basis
Curriculum	Curriculum (CBC)	Decree of The Rector of Universitas Sebelas Maret No. 491/UN27/PP/2011
2015	Indonesian National Curriculum (KKNI), National Standard of Higher Education (SN-DIKTI)	Presidential Regulation No. 8 of 2012 Regulation of The Minister of Research, Technology and Higher Education No. 49 of 2014 Regulation of The Rector of Universitas Sebelas Maret No. 644/UN27/PP/2015
2020	SN DIKTI, KKNI,	Regulation of The Minister of Education and Culture No. 3 of 2020 Curriculum Freedom of Learning- Independent Campus (MBKM)

The implementation of education in study programs within FMIPA UNS is conducted based on the higher education curriculum as stated in the UNS Statute in accordance with the provisions of the applicable legislation. The curriculum is prepared and developed by the teaching staff in each study program following the vision and mission of the study program as a general guideline for the implementation of teaching and learning activities in the university (Decree of the Minister of National Education No. 232/U/2000 Article 1 point 6). Meanwhile, the UNS Institute for Development of Education (LPP) which established in 2003 serves as a curriculum learning unit for all educational staff and has a role to determine criteria, strategies, and mechanisms for curriculum preparation and development at UNS.

The implementation of the curriculum is the teaching and learning process in the semester credit system (SCS) which is divided into face-to-face, structured, and independent activities listed in the Decree of the Minister of Education and Culture of the Republic of Indonesia No. 0211/V/1982 and No. 212/V/1982 and the Decree of the Director General of Higher Education No. 048/DJ/Kep/1982. The study load and period for each program as well as the assessment of student learning outcomes are also under the guidelines for the preparation of the higher education curriculum which require each study
program to be able to explore and exploit all of its potential in order to be the best and surpass a minimum standard.

The commitment of the leadership of Universitas Sebelas Maret to be able to organize a quality learning process that is in line with the demands of the community is observable through the establishment of the Institute for Development and Quality Assurance of Education of Universitas Sebelas Maret (LPPMP UNS) which the main duties and functions are to improve and develop instructional activities as well as plan assessment, monitoring and evaluation of education implementation. . LPPMP in fulfilling its main functions is led by a chairperson assisted by a secretary, head of the study center and administrative staff. Regular activities to improve the quality of education and quality through curriculum design include training and workshops for competency-based curriculum, Instructional Technical Training Program (PEKERTI), textbook writing workshops, and other activities for lecturers. in the UNS.

Another form of commitment from the leadership of FMIPA UNS for the implementation of curriculum development in study programs and learning methods development is stated in the routine budget allocation. Based on the curriculum training attended by educators in the FMIPA UNS and the available resources at the university, generally, the study programs at FMIPA UNS have put effort to improve and review the curriculum, as well as create documents of a new curriculum for each study program that includes elements of its competence. To find out the relevance of the curriculum, several indicators can be used, including feedback from the business world, studies and workshops by lecturers and graduate users, as well as feedback from alumni (graduates) and students. With the development of a new competency-based curriculum, it is hoped that students who finish their studies at FMIPA UNS can possess higher competitiveness.

3.2. Curriculum Evaluation

In its journey, study programs within FMIPA UNS have generally made curriculum adjustments several times to be in line with the development of the national education system and to meet the needs and developments of the labor market, such as the National Curriculum model from the Decree of the Minister of Education and Culture No.111/Dikti/Kep/1989 and the National Curriculum (Kurnas) and Local Curriculum (Kurlok) under Decree No. 0311/U/1994, the core curriculum and institutional curriculum which are separated into groups of personality development courses (MPK), scientific and
skill courses (MKK), work skills courses (MKB) and work attitude courses (MPB) in accordance with the decision of the Minister of National Education of the Republic of Indonesia No. 232/U/2000. The Decree of the Minister of National Education No. 045/U/2002 reaffirmed that the grouping of courses above was intended to be elements of competence reffering to Competency-Based Curriculum (KBK).

Although in general the university guidelines regarding planning, compiling, and evaluating the curriculum with the development of soft skills has existed, it is still necessary to make more detailed specific guidelines or handbook for the university curriculum so that there is the same understanding starting from the paradigm shift of the lecturers regarding the teaching and learning process in the university.

The curriculum is designed by the study program to achieve the learning process in the form of competence or ability to conduct tasks or work in certain areas of expertise. Competence is a set of intelligent and responsible actions possessed by someone as a condition to be considered capable by the community in performing tasks in certain fields of work (SK Mendiknas 045/U/2002). Graduate competence is a graduate qualification that includes attitudes, knowledge, and skills (Article 1 Paragraph 4, PP No. 19 of 2005). The depth of curriculum in each educational unit is stated in the competence at each level and/or semester in accordance with the National Education Standards. The competencies as referred to above consist of competency standards and basic competencies.

By paying attention to SWOT (Strength, Weakness, Opportunity, and Threat), curriculum evaluation is periodically conducted to improve RAISE (Relevance, Academic atmosphere, Internal management and organization, Sustainability, Efficiency, and productivity), strategic issues, future needs, and foresight of scientific development 2021. In addition, the Universitas Sebelas Maret Policy that aims to be World Class University encourages the Mathematics Study Program to conduct periodic curriculum evaluations, namely:

1. Every 6 months through the association of mathematicians who are members of the Indonesian Mathematical Society, abbreviated as indoms;
2. Every 4 months, through discussions with colleagues in the same field and research groups;
3. Once a year through training and workshops involving alumni, users, stakeholders, and resource persons.

The main result of the identification is the equality of Graduate Learning Outcomes (GLO) of the Mathematics Study Program to the Program Learning Outcomes (PLO). The GLO of Mathematics Study Program is in the form of a description of Attitude, Knowledge, General Skills, and Special Skills.

The Freedom of Learning-Independent Campus (MBKM) policy provides the widest opportunity for students to be able to study for three semesters outside the study program. As a response to this policy, the Mathematics Study Program has re-arranged (redistributed) courses so that the study program can flexibly facilitate learning activities outside the study program and can be recognized into credits units in the MBKM program.

As a step to strengthen the implementation of MBKM which was launched by the Minister of Education and Culture of the Republic of Indonesia, in December 2020, the Mathematics Study Program has cooperated with other universities by signing an agreement regarding the online student exchange program. The agreemenst includes the Faculty of Science and Mathematics of 5 (five) universities, namely from Universitas Diponegoro, Universitas Gadjah Mada, Universitas Jenderal Soedirman, Universitas Sebelas Maret and Universitas Negeri Yogyakarta.

The Memorandum of Understanding is authentically signed by the Dean of each university. Those 5 deans of each university are Prof. Dr. Widowati, S.Si., M.Si. (Dean of Faculty of Science and Mathematics Universitas Diponegoro); Prof. Dr. Triyono, S.U (Dean of Faculty of Mathematics and Natural Sciences Universitas Gadjah Mada); Drs. Sunardi, M.Si. (Dean of Fakultas Faculty of Mathematics and Natural Sciences Universitas Jenderal Soedirman); Drs. Harjana, M.Si., M.Sc., Ph.D. (Dean of Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret); dan Prof. Dr. Ariswan, M.Si. DEA. (Dean of Faculty of Mathematics and Natural Sciences Universitas Negeri Yogyakarta).

The Cooperation Agreement aims to conduct Freedom of Learning-Independent Campus program (MBKM) by utilizing the five universities' resources for mutual progress. The scope of the Cooperation Agreement encompasses student exchange between the parties as an implementation of MBKM Program by the Ministry of Education and Culture of the Republic of Indonesia.

The obligations and rights of each university to jointly prepare a plan, implementation, and evaluation of the cooperation implementation on MBKM

1) The obligations are as follows:
a) Accepting students from other parties to take courses that have been mutually agreed based on the Standard Operational Guidelines (POB) of each Party
b) Assuring that the student complies with all applicable regulations if the student takes courses in other parties' faculties.
c) Providing grades to students from other parties who take courses at each university.
2) The rights of each university are as follows:
a) Assessing students to other parties to take courses that have been mutually agreed upon based on the POB of each Party.
b) Obtaining grades for their students who take courses on the other parties.
c) Obtaining academic facilities for their students who take courses at other parties.

3.3. Follow-up Plan

The curriculum of the Mathematics Study Program in 2020 will begin to be implemented in the First Semester of the 2020/2021 Academic Year (August 2020 January 2021). The Mathematics Study Program provides curriculum transition time in the first two semesters of implementation by paying attention to the courses changes (airing semesters and credit loads), resources (lecturer workload), and implementation (schedules distribution)

Micro reviews will be conducted periodically along with the evaluation of each semester's learning implementation. Macro evaluation will be conducted within 5 years after the curriculum is implemented or if there are changes in internal policies of UNS and/or external policies of the Director General of Higher Education of the Ministry of Education and Culture of the Republic of Indonesia.

CHAPTER 4 CURRICULUM PLANNING FOUNDATIONS

Today's new paradigm seemingly leads to a notion that the world of education is a service industry where all activities must be directed to satisfy stakeholders. Therefore, in ensuring the achievement of good quality outputs and outcomes from the educational process that satisfies stakeholders, success rate evaluation, academic audits, and benchmarking will be determined by the academic standards at the study program level

The curriculum is an entire plan and arrangement regarding graduate learning outcomes, study materials, and learning and assessments process that are used as guidelines for the implementation of study programs in the education system, especially higher education. The Mathematics Study Program of FMIPA UNS always follows the development of the current curriculum and develops the curriculum as a response to the demands of stakeholders, and this document will describe the latest curriculum, namely the KKNI-based curriculum, outcome-based education (OBE), and the industrial revolution 4.0.

4.1. Philosophical Foundations

Curriculum development of the Mathematics Study Program employs a philosophical foundation. Curriculum development based on a philosophical foundation is needed in education, especially in determining the visions and goals of education. Philosophy will determine the visions in which the student will follow. For this reason, there must be clarity in terms of the view of human life and its existence. The philosophy embraced by a certain nation or group of people or even by individuals will greatly affect the educational goals to be achieved.

Curriculum development of the Mathematics Study Program, using the notion of pragmatism, namely curriculum development that emphasizes problem-solving, is constructed from previous knowledge. In order to harmonize the lessons given, it also pays more attention to the ability of teaching thinking skills rather than worrying about what knowledge that will be conveyed, because basically the more important thing in pragmatic
notion is the ability of problem-solving skills, while science is constantly changing all the time. Mathematical Sciences is also majorly called as "The Mother of all Sciences".

4.2. Sociological Foundations

The Mathematics Study Program produces graduates who are ready to enter society, therefore, the Mathematics Study Program Curriculum is arranged in such a way in attempt to be able to shape students who are able to live harmoniously in society or the workplace. Referring to this, the formation of student soft skills is vital and must be included in the curriculum. Soft skills must be integrated into courses that are accordant with the soft skills targets that have been described in graduate learning outcomes (GLO).

Some of the sociological foundations of mathematical sciences that underlie the preparation of the 2020 Curriculum are as follows:

1) The scope of mathematics study program graduates in the work industry encompasses quite a lot of potential fields, namely: the field of research and development, the field of experts, as educators in the world of education, as teamwork leaders.
2) A complex occupation in the field of mathematics always involves teamwork between fields, therefore, it needs supporting competencies, for example, leadership skills, communication, presentation, and decent social attitudes.

4.3. Psychological Foundations

Mathematics becomes the mother of various sciences, which gave birth to various sciences and their derivatives, and gave birth to various technological creations that made human life easier. The success of applying science is influential toward the development of technology today.

Students are individuals who are in the process of development, both physical, intellectual, social, emotional, moral, and so on. The main task of a lecturer as an educator is to help to optimize the development of his students based on their developmental tasks. By applying the foundation of psychology in the curriculum development process, the relevant education can hopefully be pursued in accordance with the nature of students, both applicable material adjustments, and the delivery and learning processes as well as the other elements adjustments as educational efforts.

4.4. Historical Foundations

The Mathematics Study Program of FMIPA UNS is the embryo of the establishment of FMIPA UNS which began to be initiated since 1982. Mathematics Study Program in Civil Engineering Study Program, Faculty of Engineering, UNS based on the Decree of the Directorate General of Higher Education Number 206/D/1989 January 26, 1989. Subsequently, on July 12, 1995 it was proposed to the Director General of Higher Education regarding the establishment of FMIPA UNS. The Minister of Education and Culture issued a decree for the establishment of FMIPA UNS which became the 9th faculty with several study programs, namely the Mathematics, Physics, Chemistry and Biology through the Decree of the Minister of Education and Culture of the Republic of Indonesia Number 0297/0/1996 October 1, 1996.

The factor that encourages the establishment of the Mathematics Study Program FMIPA UNS is that in order to improve the implementation of national development, it is necessary to develop science, especially basic sciences, which support the development of technology and potential human resources.

4.5. Juridical Foundations

Juridical foundations of curriculum arrangement by paying attention to:

1) Law of the Republic of Indonesia Number 20 of 2003 concerning the National Education System.
2) Law of the Republic of Indonesia Number 12 of 2012 concerning the Higher Education.
3) Decree of the Minister of National Education Number $232 / \mathrm{U}$ of 2000 concerning Guidelines for The Preparation of Higher Education Curriculum and Assessment of Learning Outcomes.
4) Government Regulation Number 19 of 2005 concerning the Core Curriculum of Higher Education.
5) Government Regulation of the Republic of Indonesia Number 66 of 2010 concerning Amendments to Government Regulation of the Republic of Indonesia Number 17 of 2010 concerning The Management and Implementation of Education.
6) Presidential Regulation of the Republic of Indonesia Number 8 of 2012 concerning the Indonesian National Qualifications Framework..
7) Regulation of the Minister of Education and Culture of the Republic of Indonesia Number 73 of 2013 concerning the Implementation of the Indonesian National Qualifications Framework (KKNI).
8) Regulation of the Minister of Research, Technology and Higher Education of the Republic of Indonesia Number 44 of 2015 concerning National Standards for Higher Education.
9) Regulation of the Minister of Education and Culture of the Republic of Indonesia Number 3 of 2020 concerning National Standards for Higher Education.
10) Directorate General of Higher Education, Ministry of Education and Culture 2020 concerning Guidelines for The Preparation of Higher Education Curriculum in the Industrial Era 4.0 to Support Freedom of Learning -Independent Campus (MBKM).
11) Regulation of the Rector of Universitas Sebelas Maret Number 31 of 2020 concerning the Management and Implementation of Undergraduate Program Education changes of Regulation of the Rector Number 582/UN27/HK/2016 concerning the Implementation and Management of Undergraduate Program Education.
12) The results of the FMIPA Leaders Meeting are joint courses at the faculty level, namely the Basic Mathematics and Natural Sciences Course which includes Basic Mathematics, Basic Chemistry, Basic Physics and Biology.
13) Suggestions from Alumni, Users, and Students in compulsory and elective courses along with the learning process.

CHAPTER 5 GRADUATES PROFILE AND GRADUATES LEARNING OUTCOME

Graduates of the UNS Mathematics Study Program are expected to have a career as researchers, experts, educators, public servants, leaders or entrepreneurs based on science/mathematics. Graduate profiles and descriptions are presented in the following table.

Table 2. Profile and Graduates Profile Description

Graduates Profile	Graduates Profile Description
Researcher	Bachelor of mathematics who has the ability to implement scientific principles in research and communicate the results according to ethics and academic norms.
Expert	Bachelor of mathematics who has the ability to implement mathematical scientific principles in certain technical fields.
Educator	Bachelor of mathematics who has the ability to transfer knowledge both in the field of formal, informal and non-formal education.
Public Servant	Bachelor of mathematics who has the work independence in the field of mathematics and other sciences.
Leader or Entrepreneur	Bachelor of mathematics who has managerial abilities and human resource development mainly in the field of science.

To obtain a Bachelor of S-1 Mathematics that has a mentioned profile, graduates must have the following attitudes, general skills, knowledge, and specific skills.

Table 3. Description of Graduates Learning Outcomes in Attitudes Aspect

CPL Code	Graduates Learning Outcomes Description
S1	Being devoted to God Almighty and being able to show a religious attitude
S2	Upholding human values in conducting duties based on religion, morals, and ethics

CPL Code	Graduates Learning Outcomes Description
S3	Contributing to advancing the quality of life in society, nation, state, and the progress of civilization based on Pancasila
S4	Being proud citizens who love the homeland, have nationalism and a sense of responsibility to the state and nation
S5	Respecting the diversity of cultures, views, religions, and beliefs, as well as the opinions or original findings of others
S6	Working together and having social sensitivity as well as being aware of community and the environment
S7	Obeying the law and being discipline in social and state life
S8	Internalizing values, norms, and academic ethics
S9	Demonstrating a responsible attitude of their expertise independently
S10	Internalizing the spirit of independence, resilience, and entrepreneurship

Table 4. Description of Graduates Learning Outcomes in General Skills Aspect

CPL Code	Graduates Learning Outcomes Description
KU1	Able to apply logical, critical, systematic, and innovative thinking in the context of the development or implementation of science and technology that concerns and applies humanities values in accordance with their field of expertise
KU2	Able to show independent, quality, and measurable performance
KU3	Able to examine the implications of the development or implementation of science and technology that concern and apply humanities values in accordance with their expertise based on scientific rules, procedures and ethics in order to produce solutions, ideas, designs or art criticism
KU4	Compile a scientific description of the study results mentioned above in the form of a thesis or final project report, and upload it on the university page
KU5	Able to make appropriate decisions in the context of problem solving in their field of expertise, based on the results of information and data analysis
KU6	Able to maintain and develop networks with mentors and colleagues both inside and outside the institution
KU7	Able to be responsible for the achievement of the group work results and supervise and evaluate the completion of work assigned to employee under their responsibility
KU8	Able to conduct the process of self-evaluation of the group work under their responsibility, and able to manage learning activity independently
KU9	Able to document, store, secure, and recover data to ensure validity and prevent plagiarism

Table 5. Description of Graduates Learning Outcomes in Knowledge Aspect

CPL Code	Graduates Learning Outcomes Description
P1	Mastering the basic concepts of mathematics which include the concept of logical/analytical construction of proof, modeling and solving simple problems, and the basics of computation
P2	Mastering theoretical concepts about one of the fields of mathematics, namely analysis, algebra, modeling, system optimization and computer science and applying them in analyzing, designing, and evaluating problem solving

Table 6. Description of Graduates Learning Outcomes in Specific Skills Aspect

CPL Code	Graduates Learning Outcomes Description
KK1	Able to develop mathematical thinking, which begins from procedural/computational to a broad understanding including exploration, logical reasoning, generalization, abstraction, and formal evidence
KK2	Able to observe, recognize, formulate and solve problems through a mathematical approach with or without the help of software
KK3	Able to reconstruct, modify, analyze/think in a structured way about the mathematical problems of a system/problem, assess the accuracy and interpret it
KK4	Able to take advantage of various alternatives for mathematical problems completion
KK5	Able to adapt or develop themselves, both in the field of mathematics and other relevant fields (including fields in the work industry)

Furthermore, the details of the Program Learning Outcome (PLO) contain identification of the suitability of graduate learning outcomes with PLO and identification of graduate profiles with PLO that are presented in the following tables.

Table 7. Program Learning Outcome Details

CPL Code	Program Learning Outcome
PLO1	Mastering theoretical concepts and basic principles in mathematics including exploration, logical reasoning, generalization, abstraction, and formal evidence
PLO2	Mastering the principles and applications of mathematics, computing, and its technology (such as software)
PLO3	Mastering the principles of data processing, methods/techniques, and experimentation
PLO4	Mastering knowledge of technology computation and software in solving mathematical problems
PLO5	Able to identify real problems, formulate, and design them mathematically and analyze the results
PLO7	Able to observe, recognize, collect and utilize data, as well as calculate, estimate, interpret, and other standard technical skills related to each course with and without the help of software
PLO8	Able to analyze various alternative solutions existing in real problems with mathematics and conclude them for the right decision making
PLO9	Able to solve nonroutine problem solving and conduct a job/task and develop something relatively new, either independently or in a team/group of mathematicians or across expertise
PL012	Able to disseminate the results of studies orally and in the form of reports or paperworks based on international scientific standard by utilizing Information and Communication Technology
PLO10	Able to adapt to technological changes, develop themselves independently and sustainably. Communicate and be a good team worker and be responsive to contemporary issues
PLO11	Able to behave as a mathematician with good learning behavior, work ethic, attitude and personality, including curiosity, perseverance, tenacity, accuracy, creativity, honesty and self-confidence as well as understanding professional ethics
knowledge and information and equip themselves with the most up-to-date	
PLater	

Table 8. Identification of the Suitability of Graduates Learning Outcomes with PLO

CPL Code	Attitude										General Skills									knowledge		Specific Skills				
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	1	2	1	2	3	4	5
PLO1																				\checkmark		\checkmark				
PLO2																					\checkmark	\checkmark				
PLO3																				\checkmark		$\sqrt{ }$				
PLO4															\checkmark						\checkmark			\checkmark		
PLO5															\checkmark						\checkmark	\checkmark				
PLO6																					\checkmark					\checkmark
PLO7											\checkmark	\checkmark											\checkmark			
PLO8													\checkmark											\checkmark		
PLO9														\checkmark	\checkmark			\checkmark								\checkmark
PLO10																			\checkmark				\checkmark	\checkmark	\checkmark	
PLO11	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$					$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark							\checkmark
PLO12	\checkmark									\checkmark							\checkmark									

Table 9. Identification of Graduates Profile with PLO

$\begin{aligned} & \text { PLO } \\ & \text { Code } \end{aligned}$	Researcher	Expert	Educator	Public Servant	Leader/Entrepreneur
PLO1	\checkmark	\checkmark	\checkmark		
PLO2	\checkmark	\checkmark	\checkmark		
PLO3	\checkmark	\checkmark		\checkmark	
PLO4	\checkmark	\checkmark	\checkmark	\checkmark	
PLO5	\checkmark	\checkmark	\checkmark		
PLO6	\checkmark		\checkmark		
PLO7		\checkmark			\checkmark
PLO8	\checkmark	\checkmark			
PLO9	\checkmark	\checkmark	\checkmark		\checkmark
$\begin{aligned} & \text { PLO1 } \\ & 0 \end{aligned}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\begin{aligned} & \text { PLO1 } \\ & 1 \end{aligned}$	\checkmark	\checkmark	\checkmark	\checkmark	
$\begin{aligned} & \text { PLO1 } \\ & 2 \end{aligned}$	\checkmark	\checkmark	\checkmark		\checkmark

CHAPTER 6. SCIENTIFIC LEARNING MATERIAL

6.1. Framework Arrangement of Learning Material

A set of suitable learning materials is needed in order to achieve the proposed Graduate Learning Outcome. The learning materials are specified into sub-learning materials in which the structure and the amount are suitable with each material's necessity and breadth. A type of learning materials or sub learning materials is arranged into a course and each Graduate Learning Outcome is supported by at least one learning material.

The 4.0 Industrial Revolution, which started in the beginning of $21^{\text {st }}$ century, are full of artificial intelligence, e-commerce, nano technology, automatic vehicle, genetic engineering, and innovation. The changes in this era have been happening exponentially which affects the economic growth, industry, and government's policy. In facing the 4.0 Industrial Revolution, human resources need to adapt towards the development of technology. In this case, Educational Institutions, including university, play an important role in preparing human resources by improving graduates' competencies having learning and innovation skill within mastering knowledge and technology based on their fields. Therefore, there are some skills needed in order to support the graduates in achieving their success. Some of these skills are Communication, Collaboration, Critical Thinking and Problem Solving, then Creative Thinking and Innovation.

1. Communication

Communication Skill is a skill used for presenting idea, thought, knowledge, and new information to other people through writing, speaking, picture, figure, and number. This skill includes listening, gaining information, and presenting idea. Sociological basis aims to support the students in helping the society well, so the communication skill is very needed. Human are social creatures who always interact to each other. Therefore, communication is one of the important aspects for humanity. Communication aims to transfer a message through the chosen media, so the message can be easily understood by the receiver. Effective communication happens when a message delivered by a communicator can be received well by the receiver without any misperception. Dimensions and Indicators of the $21^{\text {st }}$ century's communication skills are: (1) articulating thoughts and ideas logically and effectively through verbal or non-verbal media, (2)
listening effectively to comprehend the core of knowledge, value, behavior, and culture from the receiver, (3) utilizing communication tools or relevant technology media, as well as its impact and effectivity, (4) communicating effectively on divergent environment. The role of communication can be taught through learning process. Educators' roles are very important in leading the students in practicing every communication dimensions.

2. Collaboration

Collaboration skill is the ability of cooperating, synergizing, adapting in various roles and responsibilities, working productively, putting empathy in right situation, and respecting differences. Collaboration also refers to the ability of conducting personal responsibilities and flexibilities on working environment, determining and achieving high standards and purposes for individuals and others, and understanding ambiguity. Collaboration skill also fills the flaws and strengths of each individual, so it can solve the upcoming problems under the togetherness feeling.

3. Critical Thinking and Problem Solving

Pragmatism philosophy always becomes the basis in curriculum development, which also takes part in learning material determination. Critical thinking and problem solving skill is the ability in understanding a complicated problem and connecting an information with other information, which creates various perspective and solve the problem. Critical thinking skill also refers to the ability of reasoning, comprehending, making complicated decision, comprehending interconnection between system, arranging problem, revealing problem, analyzing problem, and solving problem. There are some dimensions in critical thinking, namely (1) formulating questions, (2) stating arguments, (3) conducting deduction, (4) conducting induction, (5) evaluating, and (6) making decision. In terms of learning approach, critical thinking skill can be practiced through (1) student-centered learning, (2) raising a question, either academic or contextual question which leads them in comprehending the materials. Moreover, the learning strategies for critical thinking skill are problem-based learning, project-based learning, cooperative group investigation, and inquiry learning.

4. Creativity and Innovation

Creativity and Innovation skills are also needed beside critical thinking and problemsolving skills based on pragmatism philosophy. These skills aim to develop, conduct, and present new ideas to others, and be open and responsive towards new and different
perspective. Creativity is the ability of developing new idea and way from the previous ones. Creativity is also defined as the ability in creating new combination. Creativity very much depends om someone's creative thinking, which refers to someone's thinking process in creating new idea. Meanwhile, being innovative is realized through the innovation of new idea collected from gradual development in a new idea or creation. Creativity and innovation can be practiced by giving new challenges on problem or case study which encourage the students in finding new solution in form of idea or creation in solving the problem.

Besides the skills elaborated above, graduates' competency in terms of information literacy is also needed in $21^{\text {st }}$ century learning process. Information literacy is the ability of conducting knowledge management and learning continuously. Information literacy also refers to the ability in realizing information needs, identifying and finding the location of information needed, evaluating information critically, organizing and integrating information to the existing knowledge, utilizing and delivering the information effectively, legally, and ethically. Information literacy is very needed in the implementation of competency-based curriculum which requires students to utilize a lot of information in various formats. In the globalization era, the competition does not only rely on someone's knowledge, but the graduates should also be able to learn and communicate continuously with others. Therefore, the graduates are expected to have information literacy with specific skills to:

1. Formulating information needs and deciding information scope needed.
a) Accessing information needed efficiently, ethically, and legally.
b) Evaluating information and its source, including evaluating whether the information will affect negatively towards psychological, social, economic, politic, and others when being used.
c) Using information effectively to reach goal.
d) Integrating selected information in the existing information.
e) Evaluating existing creation.
2. Conducting lifetime learning independently.

6.2. Study Material

Bahan kajian keilmuan mengacu pada IndoMS 2015 serta kondisi dan karakter khusus Program Studi Matematika. Dalam pelaksanaan kurikulum dan proses pembelajaran mata kuliah serta bahan kajian keilmuan, didukung oleh 4 Research Group (GR) yakni GR Combinatorial Mathematics, GR Pure Mathematics and Application, GR Mathematical Soft Computing dan GR Applied and Mathematical Analysis. Adapun kemampuan dasar dan bahan kajian ditunjukkan pada tabel berikut. The scientific learning material is based on IndoMS 2015 as well as the condition and special character of Mathematics Study Program. The curriculum implementation and learning process of courses and scientific learning material are supported by four Research Group (RG) namely Combinatorial Mathematics GR, Pure Mathematics and Application GR, Mathematical Soft Computing GR, and Applied and Mathematical Analysis GR.

Table 10. Basic Competence and Learning Material

No.	Basic Competence	Learning Material
1	Basics of Mathematics	Set
		Relations and Functions
		Mathematical Logic
		Mathematical Proof Systems
		Fumber, Integer, Rational umber
2	Differential Calculus and Integral	Real Number System
		Limit
		Continuous Functions
		Derivative
		Integral
		Sequence
		Series
		Vector-Valued Functions
		Multi-Valued Funcions
		Partial Derivative
		Double and Triple Integral
3	Ordinary Differential Equation	Ordinary Differential Equation
4	Matrix and Vector	Matrix
		Vector Space
5	Elementary Linear Algebra	System of Linear Equations

No.	Basic Competence	Learning Material
		Linear Transformation
		Orthogonalization
		Eigenvalues and Eigenvectors
		Diagonalization and Decomposition
6	Mathematical Optimization	Basic Optimization
7	Geometry	Geometry of Planes and Spaces
8	Statistics	Type of Data
		Descriptive Statistics
		Central Tendency and Statistical Dispersion
		Probability
		Probability Distributions
		Sampling Distributions
		Introduction to Hypothesis Testing
		Confidence Interval
9	Discrete Mathematics	Simple Linear Regression Analysis
		Combinations and Permutations
		Three Main Principals
10	Programming	Basics of Graph Theory
11	Basics of Natural Science	Basics of Programming
		Basic Physic
		Basic Chemistry
12	Basics of Attitude and General	Knowledge
		Reneral Biology
		Religion
		Pancasila
		Indonesian Language
		Community Service Program

CHAPTER 7.

COURSES DETERMINATION

Course Determination is done based on the curriculum recommendation and courses from the professional organization, Indonesian Mathematical Society or IndoMS, as well as discussion about learning achievement. The discussion is conducted with alumni, stakeholders, users, and related experts. The detailed courses determination is based on the diagram in Figure 2.

Figure 2. Scheme 1 of Course Forming

Courses forming and determination was started from several indicators of Graduate Learning Outcome, which are suitable as the course forming basis. The courses are optimized to contain knowledge, skill, and attitude aspects. The learning materials in Graduate Learning Outcome are selected simultaneously and elaborated in learning materials through the courses as shown in Figure 3.

SEBELAS MARET

Figure 3. Scheme 2 of Course Forming

The learning materials can be updated or developed based on the technology information and knowledge development of the study program. The determination process of learning materials involves Research Group.

CHAPTER 8. COURSES ARRANGEMENT

8.1. Courses Arrangement

2020 curriculum arrangement refers to the Regulation of the Minister of Education and Culture Number 3 of 2020 about Freedom of Learning and Independent Campus, which are adapted to the 4.0 Industry Revolution.

Courses distribution is arranged within the semesters during study period. Study period of the Mathematics Study Program is eight semesters, with the 144 minimum credits. The total credits provided consist of 107 credits of compulsory courses (50 courses), 11 credits of directed electives courses (five courses), and 66 credits of electives courses (29 courses). The optional majors in 2020 Curriculum follow the existing Research Group in Study Program, namely:

1) Combinatorial Mathematics Research Group
2) Pure Mathematics and Application Research Group
3) Mathematical Soft Computing Research Group
4) Applied and Mathematical Analysis Research Group Courses distribution in 2020 Curriculum is elaborated in the table below.

Compulsory Courses

Table 11. List of Compulsory Courses in Mathematics Study Program

No.	Course Code	Course Name (Indonesian)				
Course Name						Cre dits
Prerequisite Course Code	Prerequisite Course					
Semester I	MAT310201	Bahasa Inggris	English	2		
1.	MAT310202	Biologi Umum	General Biology	2		
3.	MAT310203	Fisika Dasar	Basic Physic	2		
4.	MAT310204	Kimia Dasar	Basic Chemistry	2		
5.	MAT310205	Matriks dan Ruang Vektor	Matrix and Vector Space	2		
6.	MAT310306	Kalkulus Diferensial	Differential Calculus	3		
7.	MAT310307	Logika Matematika dan Himpunan	Mathematical Logic and Sets	3		
8.	MAT310308	Analisis Data Eksploratif	Explorative Data Analysis	3		

No.	Course Code	Course Name (Indonesian)	Course Name	Cre dits	Prerequisite Course Code	Prerequisite Course
		Credits Subtotal		19		
Semester II						
1.	0900012001	Pendidikan Agama	Religion	2		
2.	0900012002	Pend. Kewarganegaraan	Civic Education	2		
3.	0900012004	Bahasa Indonesia	Indonesian Language	2		
4.	MAT320304	Kalkulus Integral	Integral Calculus	3		
5.	MAT320305	Geometri Analitik	Analytical Geometry	3		
6.	MAT320306	Aljabar Linear	Linear Algebra	3		
7.	MAT320307	An alisis Statistika	Statistical Analysis	3		
8.	MAT320308	Algoritme dan Pemrograman Dasar dengan Python	Basic Programming and Algorithm with Python	3		
9	0900012003	Pancasila	Pancasila	2		
Credits Subtotal				23		
Semester III						
1.	MAT330202	Pengantar Teori Graf	Introduction to Graph Theory	2		
2.	MAT330303	Pengantar Matematika Numerik	Introduction to Numerical Mathematics	3		
3.	MAT330304	Kalkulus Peubah Banyak	Multivariate Calculus	3		
4.	MAT330205	Pengantar Fungsi Khusus	Introduction to Special Functions	2		
5.	MAT330306	Teori dan Hitung Peluang	Theory and Calculation of Probability	3		
6	MAT330307	Persamaan Diferensial Biasa	Ordinary Differential Equation	3		
7.	MAT330308	Pemrograman Lanjut dengan Python	Advance Programming with Python	3	MAT320308	Basic Algorithms and Programming with Python
		Credits Subtotal		19		
Semester IV						

No.	Course Code	Course Name (Indonesian)	Course Name	Cre dits	Prerequisite Course Code	Prerequisite Course
1.	MAT341201	Metodologi Penelitian dan Penulisan Ilmiah Matematika	Research Method and Mathematical Scientific Writing	2	MAT320203	Indonesian Language
2.	MAT340302	Matematika Numerik	Numerical Mathematics	3	MAT330303	Introduction to Numerical Mathematics
3.	MAT340303	Statistik Matematika	Mathematical Statistics	3	MAT330306 MAT330304	Theory and Calculation of Probability, Multivariate Calculus
4.	MAT340204	Teori Grup	Group Theory	2	MAT310307	Mathematical Logic and Sets
5.	MAT340305	Fungsi Kompleks	Complex Functions	3	MAT330304	Multivariate Calculus
6.	MAT340306	Riset Operasi Deterministik	Deterministic Operation Research	3	MAT310306 MAT320306	Differential Calculus, Linear Algebra
7.	MAT340307	Masalah Syarat Batas	Boundary Condition Problems	3	MAT330307	Ordinary Differential Equation
Credits Subtotal				19		
Semester V						
1.	0900012005	Kewirausahaan	Entrepreneurship	2		
2.	MAT351203	Pengantar Matematika Diskrit	Introduction to Discrete Mathematics	2	MAT330202	Introduction to Graph Theory
3.	MAT351204	Pengantar Proses Stokastik	Introduction to Stochastic Processes	2	MAT340303	Mathematical Statistics
4.	MAT351305	Teknik Simulasi	Simulation Techniques	3	MAT330308	Advance Programming with Python
5.	MAT351306	Teori Ring	Ring Theory	3	MAT340204	Group Theory
6.	MAT351307	Analisis Real I	Real Analysis I	3	MAT310306 MAT320304	Differential Calculus, Integral Calculus
Credits Subtotal				15		

No.	Course Code	Course Name (Indonesian)	Course Name	Cre dits	Prerequisite Course Code	Prerequisite Course
Semester VI						
1.	MAT361201	Kegiatan Magang Mahasiswa *)	Student Internship Activity	2	MAT351203	Research Method and Mathematical Scientific Writing
Credits Subtotal				2		
Semester VII						
1.	MAT370201	Kuliah Kerja Nyata *)	Community Service Program	2		*finished 110 Credits
Credits Total				2		
Semester VIII						
1.	MAT380601	Tugas Akhir *)	Thesis	6		
Credits Subtotal				6		
Credits Total				107		

Note:

*) Student Internship Activity, Community Service Program, and Thesis Courses are available in Both Semesters (odd/even) with fulfilling minimum total credits.

Directed Elective Courses

Table 12. List of Directed Elective Courses

No.	Course Code	Elective Course (Indonesian)	Elective Course	Cre dits	Prerequisite Course Code	Prerequisite Course
Semester VI						
1.	MAT361202	Matematika Diskrit	Discrete Mathematics	2	MAT340201	Introduction to Discrete Mathematics
2.	MAT361303	Analisis Real II	Real Analysis II	3	MAT351307	Real Analysis I
3.	MAT361204	Pemodelan Epidemiologi	Epidemiology Modelling	2	MAT330307	Ordinary Differential Equation
4.	MAT361205	Pemodelan Matematika	Mathematical Modelling	2	MAT330307	Ordinary Differential Equation
5.	MAT361206	Teori Permainan	Game Theory	2	MAT340306	Deterministic Operation Research
Credits Total				11		

Elective Courses

Table 13. List of Elective Courses

No.	Course Code	Elective Course (Indonesian)	Elective Course	Cre dits	Prerequisite Course Code	Prerequisite Course
Semester III						
1.	MAT332201	Teori Himpunan	Sets Theory	2	MAT310307	Mathematical Logic and Sets
2.	MAT332202	Himpunan dan Logika Fuzzy	Fuzzy Sets and Fuzzy Logic	2	MAT310306	Mathematical Logic and Sets
3.	MAT332203	Jaringan Syaraf Tiruan	Artificial Neural Network	2	MAT310306	Differential Calculus
4.	MAT332304	Managemen Basis Data	Database Management	3	MAT310308	Explorative Data Analysis
5.	MAT332205	Komunikasi Matematis	Mathematical Communication	2		
		Credits Subtotal		11		
Semester IV						
1.	MAT342301	Matematika Peramalan	Forecasting Mathematics	3	MAT310306	Differential Calculus
2.	MAT342202	Pengantar Teori Kontrol	Introduction to Control Theory	2	MAT330307	Ordinary Differential Equation
3.	MAT342203	Teori Graf	Graph Theory	2	MAT330202	Introduction to Graph Theory
4.	MAT342304	Matematika Asuransi	Mathematical Insurance	3	MAT330306	Theory and Calculation of Probability
5.	MAT342205	Model Resiko	Risk Model	2	MAT330306	Theory and Calculation of Probability
6.	MAT342206	Kecerdasan Buatan	Artificial Intelligence	2	MAT330202	Fuzzy Sets and Fuzzy Logic
		Credits Subtotal		14		
Semester V						
1.	MAT352201	Persamaan Diferensial dan Integral Numerik	Numerical Differentiation and Integration	2	MAT330303	Introduction to Numerical Mathematics
2.	MAT352302	Riset Operasi Probabilistik	Probabilistic Operation	2	MAT330306	Theory and Calculation of

No.	Course Code	Elective Course (Indonesian)	Elective Course	Cre dits	Prerequisite Course Code	Prerequisite Course
			Research			Probability
3.	MAT352203	Pemrograman Tak Linear	Nonlinear Programming	2	MAT330303	Introduction to Numerical Mathematics
4.	MAT352304	Teori Persamaan Diferensial	Theory of Differential Equations	3	MAT330307	Ordinary Differential Equation
5.	MAT352305	Data Sains	Data Science	3	MAT332304 MAT330308	Database Management, Advance Programming with Python
		Credits Subtotal		12		
Semester VI						
1.	MAT362201	Persamaan Diferensial Parsial Numerik	Numerical Partial Differential Equations	2	MAT351307	Boundary Condition Problems
2.	MAT362202	Teori Modul	Module Theory	2	MAT351206	Ring Theory
3.	MAT362303	Pengantar Kriptografi dan Teori Koding	Introduction to Cryptography and Coding Theory	3	MAT320306 MAT351206	Linear Algebra Ring Theory
4.	MAT362204	Aljabar Linear Numerik	Numerical Linear Algebra	2	MAT320306	Linear Algebra
5.	MAT362205	Technopreneurship	Technopreneursh ip	2	MAT351202	Entrepreneurshi p
6.	MAT362206	Biometrik	Biometrics	2	MAT330307	Advance Programming with Python
		Credits Subtotal		13		
Semester VII						
1.	MAT372301	Kalkulus Fraksional	Fractional Calculus	3	MAT330304	Multivariate Calculus
2.	MAT372202	Analisis Fungsional	Functional Analysis	3	MAT361303	Real Analysis II
3.	MAT372203	Sistem Linear	Linear Systems	2	MAT342202	Introduction to Control Theory
4.	MAT372204	Teori Integral	Theory of Integral	2	MAT361303	Real Analysis II
5.	MAT372205	Sistem Dinamik	Dynamical System	2	MAT340204 MAT361303	Group Theory, Real Analysis II
6.	MAT372206	Kapita Selekta	Capita Selecta	2	MAT351203	Research

UNS
UNIVERSITAS
SEBELAS MAR

No.	Course Code	Elective Course (Indonesian)	Elective Course	Cre dits	Prerequisite Course Code	Prerequisite Course
						Method and Mathematical Scientific Writing
7.	MAT372207	Aljabar Bilinear dan Multilinear	Bilinear and Multilinear Algebra	2	MAT362202	Module Theory
Credits Subtotal				16		
		Credits Total		66		

Table 14. Matrix of PLO (Program Learning Outcomes) and Courses

Courses	$\begin{gathered} \text { PL } \\ \mathbf{O} \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{O} \\ \mathbf{2} \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{O} \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{O} \\ \mathbf{4} \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{0} \\ \mathbf{5} \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{O} \\ 6 \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{O} \\ \mathbf{7} \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{O} \\ \mathbf{8} \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{O} \\ \mathbf{9} \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{O} \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{O} \\ \mathbf{1 1} \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{O} \\ \mathbf{1 2} \end{gathered}$
English												$\sqrt{ }$
Biology												\checkmark
Basic Physics					\checkmark							\checkmark
Basic Chemistry												\checkmark
Matrix and Vector Space	\checkmark	\checkmark	\checkmark									
Differential Calculus	\checkmark	\checkmark										
Mathematical Logic and Sets	\checkmark	\checkmark										
Explorative Data Analysis	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark					
Religious Education												\checkmark
Civic Education												\checkmark
Indonesian												\checkmark
Integral Calculus	\checkmark	\checkmark										
Analytical Geometry	\checkmark	\checkmark										
Linear Algebra	$\sqrt{ }$	\checkmark										
Statistical Analysis	\checkmark	\checkmark				\checkmark						
Basic Algorithms and Programming				\checkmark			\checkmark			\checkmark		

Courses	$\begin{gathered} \hline \text { PL } \\ \mathbf{0} \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PL } \\ \mathbf{0} \\ \mathbf{2} \\ \hline \end{array}$	$\begin{gathered} \text { PL } \\ \mathbf{0} \\ \mathbf{3} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{0} \\ \mathbf{4} \\ \hline \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{0} \\ \mathbf{5} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{0} \\ \mathbf{7} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{0} \\ \mathbf{8} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ \mathbf{9} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ \mathbf{1 0} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{0} \\ \mathbf{1 1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ \mathbf{1 2} \\ \hline \end{gathered}$
in Python												
Pancasila												\checkmark
Introduction to Graph Theory	\checkmark	\checkmark										
Introduction to Numerical Mathematics	\checkmark	\checkmark		\checkmark								
Multiple variable calculi	\checkmark	\checkmark										
Introduction to Special Functions	\checkmark	\checkmark										
Theory and Calculate Opportunities	\checkmark	\checkmark	\checkmark									
Ordinary Differential Equation	\checkmark	\checkmark										
Advanced Programming with Python				\checkmark						\checkmark		
Research Methodology and Scientific Writing of Mathematics							\checkmark	\checkmark	\checkmark			
Numerical Math				\checkmark	\checkmark							
Math Statistics	\checkmark	\checkmark										
Group Theory	\checkmark	\checkmark										
Complex Functions	\checkmark	\checkmark										
Deterministic Operations Research				\checkmark	\checkmark							
Boundary Condition Problem	\checkmark	\checkmark										
Basic Socio- Cultural Sciences												\checkmark

Courses	$\begin{array}{\|c\|} \hline \text { PL } \\ \mathbf{O} \\ \mathbf{1} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{P L} \\ \mathbf{O} \\ \mathbf{2} \end{array}$	$\begin{gathered} \hline \mathbf{P L} \\ \mathbf{O} \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ \mathbf{8} \end{gathered}$	$\begin{gathered} \hline \mathbf{P L} \\ \mathbf{0} \\ \mathbf{9} \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ \mathbf{1 1} \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ \mathbf{1 2} \end{gathered}$
Entrepreneurshi p								\checkmark				\checkmark
Introduction to Discrete Mathematics	\checkmark	\checkmark										
Introduction to Stochastic Process	\checkmark					\checkmark	\checkmark					
Simulation Technique				\checkmark	\checkmark	\checkmark	\checkmark					
Ring Theory	\checkmark	\checkmark										
Real Analysis I	\checkmark	\checkmark										
Student Internship Activities *)								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Community Service Program for students *)								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Thesis *)								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Discrete mathematics	\checkmark	\checkmark										
$\begin{array}{ll} \hline \text { Real } & \text { Analysis } \\ \text { II } & \\ \hline \end{array}$	\checkmark	\checkmark										
Epidemiologica 1 Modeling		\checkmark			\checkmark	\checkmark	\checkmark					
Mathematical Modeling		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark					
Game Theory	\checkmark	\checkmark			\checkmark		\checkmark					
Set Theory	$\sqrt{ }$	\checkmark										
Fuzzy Sets and Logic	\checkmark	\checkmark										
Artificial Neural Network		\checkmark		\checkmark	\checkmark		\checkmark					
Database Management		\checkmark	\checkmark	\checkmark		\checkmark						
Mathematical Communicatio									\checkmark		\checkmark	

Courses	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{0} \\ \mathbf{2} \end{gathered}$	$\begin{gathered} \text { PL } \\ \mathbf{0} \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{0} \\ \mathbf{4} \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{0} \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{0} \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{0} \\ \mathbf{8} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{0} \\ \mathbf{9} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{0} \\ \mathbf{1 0} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ \mathbf{1 1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PL } \\ \mathbf{O} \\ \mathbf{1 2} \\ \hline \end{gathered}$
n												
Forecasting Math		\checkmark	\checkmark			\checkmark	\checkmark					
Introduction to Control Theory	\checkmark	\checkmark										
Graph Theory	\checkmark	\checkmark										
Insurance Math		\checkmark	\checkmark		\checkmark	\checkmark						
Risk Model		\checkmark	\checkmark		$\sqrt{ }$		\checkmark					
Artificial Intelligence		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark					
Numerical Integral and Differential Equations	\checkmark	\checkmark		\checkmark								
Probabilistic Operations Research		\checkmark			\checkmark	\checkmark						
Non-Linear Programming	\checkmark	\checkmark										
Differential Equation Theory	\checkmark	\checkmark										
Science Data		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark					
Numerical Partial Differential Equations		\checkmark	\checkmark									
Module Theory	\checkmark	\checkmark										
Introduction to Cryptography and Coding Theory		\checkmark		\checkmark								
Numerical Linear Algebra		\checkmark		\checkmark								
Technopreneur ship								\checkmark		\checkmark	\checkmark	\checkmark
Biometrics		\checkmark		\checkmark	\checkmark		\checkmark					
Fractional Calculus	\checkmark	\checkmark										
Functional	\checkmark	\checkmark										

Courses	PL											
	$\mathbf{0}$											
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
Analysis												
Linear System	$\sqrt{ }$	$\sqrt{ }$										
Integral Theory	$\sqrt{ }$	$\sqrt{ }$										
Dynamic												
System	$\sqrt{ }$	$\sqrt{ }$										
Capita Selecta								$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$
Bilinear and Multilinear Algebra												

8.2. Curriculum Structure of the study program

Table 15. Curriculum Structure

8.3. Freedom of Learning -Independent Campus

The implementation of Freedom of Learning -Independent Campus means students are able to take courses outside the study program or on the other campus, either in the same or different study programs or in the industry. The Freedom of Learning -Independent Campus (MBKM) refers to the UNS Chancellor's Regulation No. 31 of 2020:

1) Student exchange,
2) Student internship lectures/practical work,
3) Teaching assistant in the education unit,
4) Research/study,
5) Humanitarian activities,
6) Entrepreneurial activities,
7) Independent Study/Project,
8) Community services
9) Military training, and
10) Other forms as determined by the Rector's Regulation.

The mathematics study program supports the implementation of Freedom of Learning -Independent Campus (MBKM) by doing a cooperation agreement with Mathematics Study Programs at the Faculty of Science and Mathematics, Diponegoro University; Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada; General Sudirman University Faculty of Mathematics and Natural Sciences; The Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret and the Faculty of Mathematics and Natural Sciences, Yogyakarta State University. The 5 study programs hope that the implementation of Freedom of Learning -Independent Campus (MBKM), specifically student exchange, can be started immediately. In addition, some students have implemented Freedom of Learning through the Bangkit and Permata Sakti programs.

CHAPTER 9. FULFILLMENT STRATEGY OF GRADUATE LEARNING OUTCOMES

9.1. Learning Models and Methods

The selection of learning models and methods follows the condition that the expected abilities are determined in a learning stage in accordance with CPL. The learning models are lectures, responses, tutorials, seminars or the equivalent, practicum, field practice, research, community service, and/or other equivalent learning models. Whereas, the learning methods include: group discussions, simulations, case studies, collaborative learning, cooperative learning, project-based learning, problem-based learning, or other learning methods, that effectively facilitate the fulfillment of graduate learning achievements. The combination of learning models and methods is achievable depending on the characteristics of the courses, the linkages of the courses, learning models, and learning experiences are displayed in the Figure.

Figure 4. Mathematics Study Program Learning Implementation

The learning methods based on UNS recommendation by changing UNS to PTN-BH (State Higher Education Institutions with Legal Entity) are:

1. Case method
a. Students act as "protagonists" (main characters) who try to solve cases;
b. Students conduct case analysis to provide solutions, recommend solutions with group discussions to test and develop solution designs; and
c. Students engage in learning discussions actively while the lecturer acts as a facilitator in charge of monitoring, asking questions, directing the discussion, asking questions, and observing.
2. Team-based project learning:
a. The class is divided into groups of more than one student to work on a group task during the specified period;
b. Groups are given actual issues that happen in the society or complex questions and afterward provided space to make work plans and collaboration models;
c. Each group prepares and presents a final work in front of the lecturer, class, or other audience to achieve constructive feedback;
d. The lecturer facilitates each group during the project work period and encourages students to think critically and creatively in collaboration; and
e. Team-based project learning needs the output in the form of a portfolio.

9.2. Learning Assessment

Several programs are maintained to fulfill the learning outcomes of graduates, such as evaluating the curriculum regularly, implementing Focus Group Discussion (FGD) with students, and sharing with alumni and stakeholders.

1. Carrying out observation and evaluation of the implementation of the teaching and learning process, optimal internal quality assurance system, and curriculum evaluation;
2. Building and improving networking with alumni;
3. Increasing the publication of research results: increasing the number of international journals and increasing the number of nationally accredited scientific journals, namely
a. organize symposiums and seminars on a national and international level regularly;
b. motivate lecturers to publish their research results in an international journal;
4. Improving the quality and development of academic staff. Presently, the percentage of lecturers at the doctoral level is 17.64%, and it is expected in 2021 the lecturers at the doctoral level will reach 50%;
5. Building association initiatives with other institutions, both local, regional, national, and international in addition to developing associations in the form of student exchanges and lecturer exchanges; and
6. Providing services to society through consultation, training, and counseling by the competence of lecturers.

The assessment system in K-DIKTI uses learning assessment standards in Permendikbud Number 49 of 2014 article 18 paragraph 1 defined as minimum criteria assessment of student learning processes and outcomes to fulfill graduate learning outcomes. The assessment of student learning processes and outcomes includes principles of assessment, assessment techniques and instruments, assessment mechanisms and procedures, implementation of assessment, assessment reporting, and student graduation.

1. Principles of assessment

The principles of assessment include educative, authentic, objective, accountable, and transparent principles that are maintained in an integrated manner. The five principles explanation is displayed in Table 16.

Table 16. Assessment Principle

Principle	Keterangan
Education	Motivate improvement plans and ways of learning, and achieve learning outcomes
Authentic	Assessment oriented to a continuous learning process and learning outcomes that reflect student ability
Objective	Assessment standards are agreed upon between lecturers and students (course contract) and are free from the influence of subjectivity of lecturers and students
Accountable	The assessment is conducted in accordance with clear procedures

	and criteria, agreed upon at the beginning of the lecture (course contract), and understood by the student.
Transparan	The assessment is conducted procedurally and the value results are accessible to all stakeholders

2. Assessment Techniques and Instruments

Assessment techniques and instruments refer to the CPL, which includes attitudes, knowledge, and general and special skills, and the final result of the assessment is the integration of all the components assessed. The explanations of assessment techniques and instruments and examples for rubrics and portfolios are displayed in Tables 17, 18, and 19. These rubrics can be developed according to the characteristics of the course.

Table 17. Assessment Techniques and Instruments

Evaluation	Technique	Instrument
Attitude	Observation	• Rubric for process assessment
General Skills	Observation	- Holistic rubric
	Participation/Activity	- Descriptive/analytic rubric
	Work method	• Portfolio or project or design
	Written test	work for outcome assessment
Knowledge	Spoken test	- Development portfolio
Special Skill	Questionnaire	- Comprehensive portfolio
The final result of the assessment is the integration of various assessment		
techniques and instruments		

Table 18. Holistic Rubric

Grade	Score	Indiator
Excellent	$>=85$	The results presented are systematic, problem-solving, can be implemented, and innovative
Very good	$80-84$	The results presented are systematic, solve problems,

		can be implemented, but are less innovative
Good	$75-79$	The results presented are systematic, and solve problems, but are less implementable
Enough	$70-74$	The results presented are systematic but less solve the problem
Not enough	$65-69$	The results presented are systematic but do not solve the problem
Less	$60-64$	The results presented are less systematic
Lesser	<60	The results presented are irregular and do not solve the problem

Table 19. Presentation Assessment Rubric

Dimension	Load	Value	BxN	Comment (anecdotal notes)
Material mastery	30%			
Problem-solving accuracy	30%			
Communication skills	20%			
Ability to answer questions	10%			
Props/presentations	10%			
Final Score	100%			

3. Assessment Mechanisms and Procedures

The assessment mechanism related to the assessment stages, assessment techniques, assessment instruments, assessment criteria, assessment indicators, and assessment weights is executed by using the following plot:
a) Creating Assessment

1) Delivering assessment (course contract)
2) Agreed (course contract)
3) Implementing
4) Providing feedback
5) Documenting.
b) Planning
6) The activity of giving questions, assignments, or projects
7) Observation
8) Taking observations
9) Final score
4. Implementation of Assessment

The implementation in the assessment is executed by the lesson plan and can be carried out by:
a) Lecturer or teaching lecturer team
b) Lecturer or lecturer team by involving theoretical course assistants
c) Lecturer or lecturer team by involving practical course assistants
d) Supervisor and field supervisor for KMM
e) Supervisor and examiner for Thesis/Final project
5. Assessment Report

The assessment report contains an assessed learning experience, with score values of 100 , to later calculate the total values with the agreed formula. The final value in the 100 value is converted using a reference:

Table 20. Score Conversion

Scale (S)	Number	Letter
S >=85	4,0	A
$80=<$ S <85	3,7	A-
$75=<$ S <80	3,3	B+
$70=<$ S <75	3,0	B
$65=<$ S <70	2,7	C +
$60=<$ S <65	2,0	C
$55=<$ S <60	1,0	D
S <55	0	E

6. Student Graduation

Students can officially get a Mathematics Bachelor's degree if they have taken all the study loads and have graduate learning outcomes demanded by the study program with a Grade Point Average (GPA) greater than or equal to 2.00 (two points zero) have passed all courses. Graduation predicate programs are determined by the final GPA as follows:
a) a student is declared graduated with satisfactory predicate the GPA of 2.76 (two point seven six) to 3.0 (three points zero); or
b) a student is declared to have passed with a very satisfactory predicate if the GPA of 3.01 (three point zero one) to 3.50 (three point five zero.)
c) a student is declared to have graduated with a very satisfactory predicate if the GPA is greater than 3.50 (three points five) with a study period of more than 4 (four) years or 8 (eight) semesters.
d) a student is declared graduated with honors (cum laude) if the GPA is greater than 3.50 (three points five) and with a study period not surpassing the limit of 4 (four) years or 8 (eight) semesters.
e) a student with GPA less than 2.76 are declared to have passed without a predicate.

9.3. Facility and Infrastructure

The Mathematics study program to fulfill the learning achievement of graduation provides several facilities that support both academic and non-academic. The academic support facilities include laboratories for course practicums and research laboratories. The study program also provides the facilities and infrastructure that support non-academic activities. The facility is in the form of a particular research laboratory for preparing for student competitions. The laboratory is able to support the competition in the field of IoT and Programming. The prepared competitions such as Gemastik, LIDM, and other competitions.

The faculty also provides other non-academic facilities and infrastructure to support student proficiency and prepare the students to enter the working world. The improvement of student proficiency is in the form of certification of expertise in certain fields. The Mathematics study program has built a collaboration (MoU and MoA) with the Microsoft Technology Associate (MTA) certification agency. The mathematics study program sent several lecturers to join the TOT (Training of Trainers) in two fields: programming python dan Database (Microsoft SQL Server). The ToT program has the advantage that we can provide training to students combined with relevant courses and as a result, students can immediately take the international certification exam. The program can reduce training expenses, considering the training includes
relevant courses, and is learned by lecturers with ToT qualifications, as a result, they only need to pay the certification exam expense. The program can support the Freedom of Learning -Independent Campus (MBKM), and these activities have been conducted since 2018.

The development of UNS into State Higher Education Institutions with Legal Entity (PTN-BH) and along with the availability of Professional Certification Institute (LSP). The availability of this LSP Institution can add to the areas of expertise that can be certified. The Mathematics study program also sends lecturers to take part in the ToT, purposely afterward can provide training to students in the areas of expertise:

1. Programmer Occupational Certification Scheme;
2. Young Network Administrator Occupational Certification Scheme;

The training process is conducted with the included model according to the relevant courses. Therefore, students can get an additional certificate of expertise to add to their provisions in entering the working world.

REFERENCES

1. Peraturan Rektor Tiniversitas Sebelas Maret Nomor 31 Tahun 2020 Tentang Penyelenggaraan Dan Pengelolaan Program Sarjana
2. Dirjen DIKTI, 2020. Buku Panduan Merdeka Belajar-Kampus Merdeka. Kemendikbud.
3. Keputusan Rektor Universitas Sebelas Maret No. 787/UN27/HK/2019 tentang Penghargaan Akademik Kegiatan Penalaran Mahasiswa Universitas Sebelas Maret.
4. Dirjen DIKTI, 2020. Buku Saku Panduan Merdeka Belajar Kampus Merdeka, Kemendikbud.
5. Peraturan Menteri Pendidikan Dan Kebudayaan Republik Indonesia Nomor 3 Tahun 2020 Tentang Standar Nasional Pendidikan Tinggi
6. Amstrong, David G. (2003). Curriculum Today. New Jersey: Merril Prentice Hall.
7. Arnyana, I. B. P. (2019). Pembelajaran untuk meningkatkan kompetensi 4c (communication, collaboration, critical thinking dancreative thinking) untukmenyongsong era abad 21. Prosiding: Konferensi Nasional Matematika dan IPA Universitas PGRI Banyuwangi, 1(1), i-xiii.
8. Lien, D. A., Gunawan, A. W., Aruan, D. A., Kusuma, S., \& Adriyanto, S. (2020). Literasi informasi: 7 langkah knowledge management. Penerbit Universitas Katolik Indonesia Atma Jaya.
